
Introduction 
A reflective interface existing along the input 
waveguide coupled to a resonant cavity will interact 
with the reflection at the cavity/coupler interface.  It’s 
influence on the reflection coefficient and the cavity 
decay time will introduce an error into the calculation 
of the cavity’s unloaded quality factor (Q).  The 
specific case considered here is a reflective interface  
in the form of an adapter connecting the input 
transmission line to the input coupler of the CKM 
(Charged Kaons at the Main Injector) 
superconducting radio frequency (SCRF) deflecting 
mode cavity.  A method to determine the error in the 
calculation of the cavity Q due to this adapter is 
presented and applied to the vertical test stand Q 
measurement system which has been used to 
characterize the CKM cavities.  

The Measurement System Model 
A circuit model of the measurement system is shown 
in Fig. 1.  A length of lossy transmission line 
separates an adapter from a cavity that is coupled 
onto an input transmission line through a coupling 
coefficient of β1. For simplicity the transformer 
representing the coupling has not been shown, rather 
the cavity has already been transformed onto the 
input transmission line.  The adapter is assumed to be 

                                                 
1 For the development of the circuit model for a cavity near 
resonance, see [1] Ch. 4 & 5and [2] Ch. 9. 

a lossless reciprocal 2-port device2 whose s-
parameters vary slowly with frequency and whose 
reference planes are considered such that s11 is real 
and equals s22 for simplicity.  Not shown is a pickup 
probe that is weakly coupled to the cavity.  It 
monitors the energy in the cavity and is used to 
measure the decay time of the cavity/coupler system.  
The measurement reference plane is at the leftmost 
reference plane of the adapter.  It is here that a source 
and directional coupler are inserted for 
measurements.  The 50Ω resistor represents the 
impedance that the source presents to the system 
when the source is shut off for decay time 
measurement. 
 
The unloaded Q of the cavity is typically measured as 
follows: 
 
1.) Find the resonant frequency, nω  ,of the system by 

maximizing the signal at the pickup probe and 
measure the electric field decay time, measEτ , of 

the system while pulsing the cavity at nω  . 
 
2.) Measure the reflection coefficient, measΓ , on 

resonance at the measurement reference plane to 
determine the input coupling coefficient, measβ , 
according to the formula 

meas

meas
meas Γ

Γ±
=

m1
1

β   ,   (1) 

where the upper signs are chosen for the over-
coupled case and the lower signs are chosen for 
the under-coupled case. 

                                                 
2 For a discussion of the properties of reciprocal 2-port 
networks see [3] pp.190-191,370-372 and [4] pp.199-201. 
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Figure 1: Measurement System Circuit Model



3.) Calculate the unloaded Q, measoQ , from the 
resonant frequency, the electric field decay time, 
and the input coupling coefficient according to 
the formula 
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4.) Furthermore, the electric and magnetic field 

levels inside the cavity are calculated from the 
electric and magnetic energies, which are 
assumed to be equal at resonance and are 
calculated according to the formula 
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where PeakEU and PeakMU  are the peak electric 
and magnetic energy respectively, and meascavP  is 

the measured power loss in the cavity which is 
determined from the power delivered to the 
network. 

Solution Procedure 
To quantify the effects of the reflective adapter on the 
system measurements, the following solution 
procedure was applied: 
 
1.) Calculate the natural resonant frequency and 

the decay time of the un-driven system 
consisting of the parallel combination of the 
cavity impedance at the cavity reference plane 
and the impedance presented to the cavity by the 
input coupler. 

 
The impedance presented to the cavity is the 
impedance seen looking from the cavity reference 
plane towards the source.  Due to the reflective 
adapter, the 50Ω source impedance is transformed 
through the adapter and the 
transmission line into a 
reactive impedance at the 
cavity reference plane.  Thus, 
at the cavity reference plane, 
the undriven system can be 
represented as in Fig. 2.   
 
In the absence of a source current, the following 
equation must be satisfied for the circuit of Fig. 2, 

011
=








+

cavext ZZ
V  .   (4) 

 
The solution for V is assumed to be of the form 

tiVe ω . For a nontrivial solution to (4), we must have 
 

cavext ZZ −=  ,    (5) 
 

which is satisfied for passive impedances by allowing 
ω to be complex.  Thus, we define the complex 
frequency at which (5) is satisfied as 

E
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τ
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+=     (6) 

where nω is the natural frequency of oscillations and  

Eτ  is the decay time-constant of the voltage.  The 
meaning becomes clear when considering that the 
solution for V becomes 
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Rewriting Eq. (5), decayω is found as the root of the 
following equation: 
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where d is the length of the transmission line with 
complex propagation constant 

c
i ωαωγ +=)(  with 

losses of α (Nepers/m), with an adapter which has a 
reflection coefficient of cons11  and onto which the 
cavity of resonant frequency oω and unloaded Q, oQ , 
is coupled with a coupling coefficient β.  The 
derivation of this equation and subsequent equations 
can be found in Appendix A. 
 
It is at nω that the measurements are assumed to be 
taken because this is approximately equal to the 
frequency at which the maximum voltage and the 
maximum pickup probe signal will occur when the 
circuit of Fig. 2 is driven with a sinusoidal source.  
This approximation was investigated and was found 
to be valid. 
 

Figure 2: 



Note: nω  will be different from oω , the cavity’s 
design resonant frequency, when the reflective 
adapter causes the impedance presented to the cavity 
to be reactive.  Thus, the reflective adapter influences 
the frequency tuning of the cavity.  This de-tuning is 
also dependent upon the transmission line length 
separating the cavity from the adapter and the 
coupling coefficient β . 
 
The measured loaded quality factor of the system of 
Fig. 2 is thus calculated as, 
 

2
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where as in Eq. (8), it has been allowed for d and β to 
be varied to simulate various physical situations. 
 
2.) Calculate the reflection coefficient seen at the 

measurement reference plane at the natural 
resonant frequency and the corresponding 
coupling coefficient. 

 
The reflection coefficient seen at the measurement 
reference plane can be expressed as 
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where cons21  is the transmission coefficient of the 
lossless reciprocal adapter given as 
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and where ),( βωcavΓ  is the reflection coefficient of 
the cavity which is coupled to the transmission line 
with coupling coefficient, β, at the cavity reference 
plane and which is expressed as 
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In (10) it is assumed the adapter is a lossless 
reciprocal 2-port and that the reference planes of the 

adapter are chosen such that cons11  is purely real for 
simplicity. 
 
Once measΓ  is known at ),( βω dn , the measured 
coupling coefficient, measβ , is calculated as 
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where mathematically the choice of over-coupling or 
under-coupling is based upon whether the known 
unloaded Q, oQ , is respectively either more than or 
less than twice the observed loaded Q, LQ .  In actual 
measurement practice this choice is based upon the 
signature of the time-domain reflected power seen at 
the measurement plane.  This mathematical 
simplification eliminates having to know the 
adapter’s s-parameters over a very broad range of 
frequency; which would be necessary to simulate a 
pulsed response. 
 
3.) Calculate the measured unloaded Q and the 

associated percent error. 
 
Given the results of the previous steps, the measured 
unloaded Q,  measoQ , would be calculated as 
 

[ ] ),(),(1),( ββββ dQddQ Lmeasmeaso ⋅+= .  (14) 
 
The resulting percent error between measoQ  and the 
actual oQ  is thus defined to be 
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4.) Furthermore, calculate the error in the 

measured cavity electric and magnetic energy. 
 
The peak voltage appearing across the cavity for a 
unit peak forward voltage wave applied by the source 
at the measurement plane can be expressed as, 
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The power delivered to the network at the natural 
resonant frequency, or the assumed power delivered 
to the cavity, cavP , as measured at the measurement 
reference plane for a unit peak forward voltage wave 
is just the difference between the power associated 
with the forward wave and the power associated with 
the reflected wave at the measurement reference 
plane and is expressed as 
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where oZ  is the characteristic impedance of the 
transmission line separating the adapter and the 
cavity. 
 
The assumed peak electric and magnetic energy will 
then be measured as, 
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The actual peak electric and magnetic energy in the 
cavity are given as 
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and 
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Thus, the associated percent errors are, 
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Results 
The solution procedure was performed for the 
parameters of the CKM vertical test stand Q-
measurement system using Mathcad3.  The 
parameters of the CKM cavities and the vertical test 
stand that were used in the equations are as follows: 
 

9101.2 ⋅=oQ  

oo fπω 2=   with 9109.3 ⋅=of  

35106 7 =⇒⋅= DesignDesignextQ β  

350 to=β  
VSWRadapter : 2.33  dBs con 84.011 −≅≅⇒  
α (transmission line attenuation): 0.03 Np/m 

od (nominal transmission line length) oλ4=  
)5.0( ooo dtodd λ+=  

 
β was varied from 0 to 35, which corresponds to extQ  

ranging from infinite to the design extQ of 7106 ⋅  to 
simulate a range of various cavity coupling 
coefficients, including near critical coupling where 
typical Q-measurements are taken.  Also the length d 
was varied over one half of a wavelength to simulate 
a range of transmission line lengths separating the 
cavity and the adapter. 
 
The results of the solution with these parameters are 
shown in Figs. 3-6.  A copy of the Mathcad input file 
used for the simulation is included in Appendix B. 

                                                 
3 Mathcad is written by Mathsoft, Inc. 101 Main Street, 
Cambridge, MA 02142 



 
Adapter VSWR=2.33 

 
Adapter Distance from Cavity in Wavelengths 

Figure 3:  Calculated Percent Error in Measurement of Qo 
for the CKM Vertical Test Stand with an adapter of 
VSWR=2.33 shown for constant cavity coupling 
coefficient contours, β (from 0 to 35),  as a function of 
adapter distance from the cavity in cavity resonant 
frequeny wavelengths. Vertical axis is percent error. 

 
 

Adapter VSWR=2.33 

 
Adapter Distance from Cavity in Wavelengths 

Figure 5:  Resonant frequency shift in Hertz (y-axis) for 
an adapter of VSWR=2.33, shown for constant β contours 
as a function of the adapter distance from the cavity in 
wavelengths (x-axis). Vertical axis is resonant frequency 
shift in Hz. 

 

 
Adapter VSWR=2.33 

 
Figure 4: Percent Error (z-axis) in the Calculation of the 
Electric and Magnetic Energy for an adapter of 
VSWR=2.33 as a function of both cavity coupling 
coefficient, β (from 0 to 35 in the x-axis), and adapter 
distance from the cavity, d (from 4λo to 4.5λo in the y-
axis). Note: The spikes occurring for low coupling 
coefficients are due to a mathematical switch in the 
decision of an over-coupled or an under-coupled 
situation. 

 
 
 

Adapter VSWR=2.33 
 

 
Figure 6:  Ratio of the actual Qext to the designed Qext 
for an adapter of VSWR=2.33. The designed Qext 
represents the cavity coupling to the transmission line as 
designed by the antenna geometry, whereas the actual Qext 
represents the true loading of the cavity due to the 
reflective adapter.  This curve was found to be true for all 
values of designed cavity coupling coefficient β. 

 



As a further investigation, Fig. 7 shows the error 
which would result if the adapter was calibrated out 
for the steady-state measurement of the input 
coupling coefficient but not during the decay 
measurement.  This is the situation that occurs in 
practice when the cavity is forced to see the reflective 
adapter during decay. 
 

Percent Error with Steady-State Calibration 
But Without Decay Calibration 

 
Adapter Distance from Cavity in Wavelengths 

Figure 7: Resultant Percent Error in Qo if the adapter is 
assumed to be calibrated out of the steady-state 
measurement of the coupling coefficient but cannot be 
calibrated out of the decay time for an adapter of 
VSWR=2.33. 

Conclusion 
The measurement error in the unloaded quality factor 
for the CKM vertical test stand Q-measurement 
system has been investigated.  The error in the 
unloaded quality factor measurement is well under 
10% for near unity coupling without performing a 
calibration of the reflective adapter.  The error in the 
calculation of the cavity energy is under 5%. 
However, the reflective adapter does cause a resonant 
frequency shift of the system which is dependent 
upon the transmission line length which is varied to 
adjust the cavity coupling.  These effects will grow 
with increasing VSWR of the adapter.  Also not 
considered is the electromagnetic stress which the 
adapter will incur when placed in a transmission line 
with a high VSWR such as in the designed system 
which has a large cavity coupling coefficient by 
design. 
 
The low percent error is a result of the short length of 
transmission line in the system.  For longer lengths of 
transmission line separating the reflective interface 
from the cavity, the error will grow due to the fact 
that the reflective interface is closer to the 
measurement plane than to the cavity. Thus, the 
measurement of the input coupling coefficient is 
affected more greatly than the decay time 
measurement.  In this situation, a calibration of the 
adapter may help the measurements.  However, as 
was seen for the given conditions of the CKM 
Vertical Test Stand, a calibration of this adapter 
should not be performed, for it would cause larger 
error. 
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Appendix A 
 
The impedance of a parallel resonant circuit at the 
end of a transmission line can be written as: 
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This presents a reflection coefficient at the end of a 
transmission line given as: 
 











 −
++











 −
+−

=Γ

o

o
o

o

o
o

cav

Qi

Qi

ωω
ωω

β

ωω
ωω

β

βω
22

22

1

1
),(   (2) 

 
It is from this equation that the coupling coefficient 
can be calculated from a measurement of the 
magnitude of the reflection coefficient at oω for 
which  

meas

meas
meas Γ

Γ±
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m1
1

β    (3) 

 
where the upper signs are chosen for the overcoupled 
case ( 1>β ) and the lower signs are chosen for the 
undercoupled case ( 1<β ). 
 
The reflection coefficient of Eq.(2) is transformed 
through a lossy transmission line and presents a 
reflection coefficient to the output of a connector 
given as: 
 

d
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Using s-parameter theory, the input reflection seen at 
the input of a connector as shown in Fig. A1 can be 
expressed as: 
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If the connector is assumed to be lossless, reciprocal 
and physically symmetric, one can take advantage of 
the unitary properties of the connector’s s-matrix (see 
text footnote 2).  Under such conditions: 
 

concon ss 2112 =   (6a) 

concon ss 2211 =   (6b) 
 
Furthermore, if it is assumed that the connector 
reference plane is such that s11 is real for simplicity, 
then the amplitude and phase constraint on s21 for the 
connector’s s-matrix to be unitary is such that 
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Equations (4)-(6) can be combined to yield the 
expression for the reflection coefficient seen at the 
measurement plane 
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The definition of reflection coefficient in terms of 
impedances is given as (see Ref [5])  
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where LZ  is the load impedance at the end of a 
transmission line of characteristic impedance oZ . 
From this equation the impedance presented to the 
parallel resonant circuit of Fig. 1 from the text can be 
calculated.  The matched source impedance is 
transformed through the connector’s s-matrix and the 
lossy transmission line such that the reflection 
coefficient seen on the lossy transmission line 
looking out from the parallel resonant circuit is given 
as 

d
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where use of Eq. (5) was made with 0=ΓL due to 
the source match.  Using equation (9), the impedance 

Figure A1 



associated with this reflection coefficient is expressed 
as 
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This impedance appears in parallel with the parallel 
resonant circuit such as in Fig. 2 of the text.  Thus, in 
the absence of a source impedance, Kirchhoff’s 
current law stipulates that 
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As in the text, the solution for the circuit voltage, V, 
is assumed to be of the form tiVe ω  for which a 
complex frequency allows equation (12) to be 
satisfied by making 
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Using Eq. (1) for the cavity impedance, cavZ , and Eq. 
(11) for the external impedance, extZ , Eq. (13) can be 
written as 
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And thus, the complex resonant frequency which 
gives the natural frequency of oscillations and the 
decay time-constant is found to be the root of the 
function, 
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The solution of the voltage at the cavity reference 
plane when the system is driven can be carried out 
with reference to Fig. A1.  Using voltage waves, the 
voltage wave traveling towards the cavity in Fig. A1 
is expressed in terms of the other waves as 

 

2
)(2

221
)(

212 aesaesb d
con

d
con

⋅−⋅− += ωγωγ  . (16) 
 
The wave reflected off of the cavity is expressed as 
 

22 ba cavΓ=  .  (17) 
 

Combining (16) and (17) yields 
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The total voltage at the cavity reference plane is the 
sum of the forward and reflected waves 
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Substituting Eq.’s (17) and (18) into Eq. (19) yields 
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On resonance, the electric and magnetic energy of a 
parallel RLC circuit are equal. 
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is the peak current in the inductor and pkV  is the 
voltage appearing across the RLC circuit.  Since 
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Eq. (22) can be written using Eq. (24) & (25) as 
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while Eq. (21) can be rewritten using CRQ oo ω= as 
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αant 0.03:= γant ω( ) αant i
ω

c
⋅+:=

Now set up arrays for varying the length and the cavity coupling coefficient

numlen 160:= numβ 100:= n 0 1, numlen..:= m 0 1, numβ..:=

Qext_min 6 107⋅:= βmax
Qo

Qext_min
:= lenn lant

n
numlen

λo
2

⋅+:= βinm
0

m
numβ

βmax⋅+:=

Define a frequency vector for a frequency sweep:

freq_start 3.8999999 109⋅:= freq_stop 3.9000001 109⋅:= num_pts 801:=

k 0 1, num_pts 1−..:=

freq_step
freq_stop freq_start−

num_pts 1−
:=

freqk freq_start k freq_step⋅+:= ∆freqk freqk fo−:=

Appendix B: Mathcad Input File

Effect of a Reflective Interface on the Q-measurements of a Resonant Circuit
First define our systems parameters

Define our adapter's s-parameters

VSWR 2.33:= s11con
VSWR 1−

VSWR 1+
:= s22con s11con:= s21con 1 s11con( )2− e

i
π

2
⋅

⋅:=

s11con 0.399= s22con 0.399= s21con 0.917i= 20 log s11con( )⋅ 7.972−=

Define the cavity parameters:

fo 3.9 109⋅:= ωo 2π fo⋅:= Qo 2.1 109⋅:=

Next define the transmission line properties. The Vertical Test Stand exhibits approximately 4 
wavelengths between the cavity and the adapter.

c 3 108⋅:= λo
c
fo

:= Zo 50:=

lant 4 λo⋅:=



βmeas d β,( )
1 sign

Qo
QL d β,( ) 2−
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Γmeas ωn d β,( ) d, β,( )+

1 sign
Qo

QL d β,( ) 2−


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


Γmeas ωn d β,( ) d, β,( )−

:=

We base our mathematical decision of over-coupling or under-coupling upon the sign of 
the coupling that the cavity sees during decay.

Γmeas ω d, β,( ) s11con
s21con

2
Γcav ω β,( )⋅ e

2− γant ω( ) d⋅



⋅

1 s11con Γcav ω β,( )⋅ e
2− γant ω( ) d⋅



⋅−

+:=

Then calculate the reflection coefficient at the measurement plane:

Γcav ω β,( )
β 1 i Qo⋅

ω
2

ωo
2

−

ω ωo⋅
⋅+









−

β 1 i Qo⋅
ω
2

ωo
2

−

ω ωo⋅
⋅+









+

:=

First find the reflection coefficient at the cavity plane:

2.) Calculate the reflection coefficient seen at the measurement reference plane at the 
    natural resonant frequency and the corresponding coupling coefficient

βdecay d β,( )
Qo

QL d β,( ) 1−:=QL d β,( ) ωn d β,( )
τE d β,( )
2

⋅:=

Now calculate the loaded Q which is measured during the cavity decay

τE d β,( ) 1
Im ωdecay d β,( )( )

:=ωn d β,( ) Re ωdecay d β,( )( ):=ωdecay d β,( ) root f ω d, β,( ) ω,( ):=

ω ωo i+:=

The complex resonant frequency which solves the circuit equations is the root of this 
function. To find the root, we need an initial guess.

f ω d, β,( ) 1 i Qo⋅
ω
2

ωo
2

−

ω ωo⋅









⋅+











1 s11con e
2− γant ω( ) d⋅

⋅+





1 s11con e
2− γant ω( ) d⋅

⋅−





⋅ β+:=

Define the function for which we are to solve for complex ω.

1.) Calculate the natural resonant frequency and the decay time of the un-driven system 
consisting of the parallel combination of the cavity impedance at the cavity reference 
plane and the impedance pressented to the cavity by the input coupler.

Define all functions:



UM_%error d β,( ) UE_%error:=UE_%error d β,( )
Ucav_meas d β,( ) UE d β,( )−

UE d β,( ) 100⋅:=

Calculate the percent error in the electric and magnetic energy, assume ωn ~= ωo :

UM d β,( )
ωo

ωn d β,( )( )2
UE d β,( )⋅:=UE d β,( )

Qo
ωo

Vcav ωn d β,( ) d, β,( )( )2
2 β⋅ Zo⋅

⋅:=

Calculate the actual electric and magnetic energy:

Ucav_meas d β,( ) Pcav_meas d β,( )
Qo_meas d β,( )

ωn d β,( )⋅:=

Calculate the assumed electric and magnetic energy:

Pcav_meas d β,( ) 1
2 Zo⋅

1 Γmeas ωn d β,( ) d, β,( )( )2−



⋅:=

Calculate the assumed power delivered to the cavity:

Vcav ω d, β,( ) s21con e
γant ω( )− d⋅



⋅

1 Γcav ω β,( )+( )
1 s22con e

2− γant ω( ) d⋅



⋅ Γcav ω β,( )⋅−




⋅:=

Calculate the voltage appearing across the cavity impedance:

4.) Furthermore, calculate the error in the measured cavity electric and magnetic  energy. 

Q%error d β,( )
Qo_meas d β,( ) Qo−

Qo
100⋅:=Qo_meas d β,( ) 1 βmeas d β,( )+( ) QL d β,( )⋅:=

3.) Calculate the measured unloaded Q and the associated percent error.



UM_%error_calcn m2,

Ucav_calcn m2 1+,
UM_calcn m2 1+,

−

UM_calcn m2 1+,

100⋅:=

UE_%error_calcn m2,

Ucav_calcn m2 1+,
UE_calcn m2 1+,

−

UE_calcn m2 1+,

100⋅:=

m2 0 1, numβ 1−..:=

Cannot calculate at βin=0 since here U=0, thus let's only use non-zero values of β

UM_calcn m,

ωo
Re ωcomplexn m,















2

UE_calcn m,
⋅:=UE_calcn m,

Qo
2 ωo⋅

Vcav_calcn m,




2

βinm

⋅:=

Ucav_calcn m,

Pcav_calcn m,
Qo_calcn m,
⋅

Re ωcomplexn m,






:=

Now, based upon this power, we calculate the normalized stored energy in the cavity from our 
calculations of Q and our driving frequency. Note: normalization to Zo, since P is normalized.

Pcav_calcn m,
1
2
1 Γmeas_fo_calcn m,






2

−





⋅:=

Γmeas_fo_calcn m,
Γmeas Re ωcomplexn m,






lenn, βinm

,





:=

Calculate the normalized power that is delivered to the entire network. P forward is normalized 
to (Vfwd=1)^2 / (2) as opposed to Vfwd^2/(2*Zo) since Zo will drop out of the error expression. 

Vcav_calcn m,
Vcav Re ωcomplexn m,






lenn, βinm

,





:=

Qext_factorn m,

βinm
βdecay_calcn m,

:=Qextn m,

Qo
βdecay_calcn m,

:=

Q%error_calcn m,

Qo_calcn m,
Qo−

Qo
100⋅:=Qo_calcn m,

Qo_meas lenn βinm
,





:=

βdecay_calcn m,
βdecay lenn βinm

,





:=

fshiftn m,

Re ωcomplexn m,






ωo−

2π
:=ωcomplexn m,

ωdecay lenn βinm
,





:=

Note: For some calculations we need not calculate from the function but from previous 
calculations. This saves calculation time.

Now that all functions have been defined, let's calculate them for our systems parameters:



This plot shows that minimum reflection and maximum transmission do not always occur at the 
same frequency.  This is seen by noticing that the contours of the voltage and the reflection 
coefficient are not overlapping for all conditions. The next section will look at a specific instance.

∆freq2 len3, Vcav_calc2,( ) ∆freq2 len3, Γmeas_calc,( ),

Γmeas_calck n,
Γmeas 2π freqk⋅ lenn, βin indexβ( )

,





:=Γcav_calck m,
Γcav 2π freqk⋅ βinm

,





:=

Vcav_calc2k n,
Vcav 2π freqk⋅ lenn, βin indexβ( )

,





:=indexβ 40:=

Look at the response at a particular cavity coupling factor for all frequencies near resonance 
and for all adapter distances varying over 1/2 wavelength.

Let's perform some further investigations into overall circuit behavior: 

β4n m2, βinm2 1+
:=len4n m2,

lenn
λo

:=len3k n,

lenn
λo

:=

∆freq2k n, ∆freqk:=β2n m, βinm
:=len2n m,

lenn
λo

:=

Define some parameters for facilitating plotting:

max zeroimag_abs( ) 1.958 10 6−
×=max zeroreal_abs( ) 1.381 10 6−

×=

zeroimag_absn m,
Im zeron m,( ):=zeroreal_absn m,

Re zeron m,( ):=

zeron m, f ωcomplexn m,
lenn, βinm

,





:=

Error Check:  Is the solution for ωcomplex truly a root of the original equation? 



Hzfnatural fVmax− 0.1−=

fnatural

Re ωdecay len indexlen( ) βin indexβ( )
,











2π
:=

Compare frequency of maximum cavity voltage and the natural resonant frequency

fVmax fΓmin− 8=

Difference between frequency of maximum cavity voltage and minimum reflection:

fΓmin 3.899999983 109×=fVmax 3.899999991 109×=

fΓmin freqIndexΓmin
round

rows IndexΓmin( )
2








:=fVmax freq IndexVmax
round

rows IndexVmax( )
2















:=

IndexΓmin match Γmin Γmeas_test,( ):=IndexVmax match Vmax Vcav_test,( ):=

Γmin 0.914=Γmin min Γmeas_test( ):=Vmax 1.35675=Vmax max Vcav_test( ):=

Γmeas_testk
Γmeas_calc k indexlen,( )

:=Vcav_testk
Vcav_calc2 k indexlen,( ):=

Find frequency of minimum reflection:Find frequency of maximum cavity voltage:

3.8999999 .1093.89999995 .109 3.9 .109 3.90000005 .1093.9000001 .109
0

2

4

Vcav_calc2k indexlen,

30 Γmeas_calck indexlen,
⋅ 25−

freqk

indexlen 70:=

Let's compare frequencies where maximum cavity voltage and minimum reflection occur for a 
specific Adapter distance from the cavity.


